Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.12 \text{ mm}$

4827 measured reflections

2140 independent reflections

1508 reflections with $I > 2\sigma(I)$

 $\mu = 0.54 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.053$

Z = 2

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[μ_2 -aqua-bis[μ_4 -2-(1H-1,2,3-benzotriazol-1-yl)acetato]dipotassium]

Qiong Liu

Department of Environment Engineering and Chemistry, Luoyang Institute of Science and Technology, 471023 Luoyang, People's Republic of China Correspondence e-mail: shujianrufeng@yahoo.com.cn

Received 19 February 2012; accepted 29 February 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.008 Å; R factor = 0.069; wR factor = 0.135; data-to-parameter ratio = 15.7.

In the title compound, $[K_2(C_8H_6N_3O_2)_2(H_2O)]_n$, each K⁺ ion is seven-coordinated by one O atom from a bridging water molecule, five carboxylate O atoms and one N atom from a benzotriazole group, forming a distorted mono-capped octahedral geometry. In the crystal, the carboxylate groups act as bridging ligands, forming a two-dimensional polymer parallel to (001). The aqua ligand, which lies on a twofold rotation axis, forms intermolecular $O-H \cdots O$ hydrogen bonds within these layers.

Related literature

For background and the synthesis, see: Hu et al. (2008).

Experimental

Crystal data $[K_2(C_8H_6N_3O_2)_2(H_2O)]$

 $M_r = 448.53$

Monoclinic, C2 a = 12.159 (2) Å b = 4.5893 (9) Å c = 17.666 (4) Å $\beta = 104.98 \ (3)^{\circ}$ V = 952.2 (3) Å³

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.878, T_{\max} = 0.937$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.069$	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.135$	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
S = 1.05	Absolute structure: Flack (1983),
2140 reflections	925 Friedel pairs
136 parameters	Flack parameter: -0.02 (9)
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected bond lengths (Å).

$X1 - O2^i$	2.718 (4)	K1-O1	2.872 (4)
K1-O3	2.760 (3)	K1-N2	2.934 (4)
$X1 - O2^{ii}$	2.829 (3)	$K1 - O1^{ii}$	3.287 (3)
$X1 - O2^{iii}$	2.835 (4)		

Symmetry codes: (i) $x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) -x + 1, y, -z + 1; (iii) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H3\cdots O1^{iv}$	0.87 (6)	1.87 (7)	2.729 (5)	167 (7)
Symmetry code: (iv) x	$x_{1} v = 1, z_{2}$			

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by a start-up grant from Luoyang Institute of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5422).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hu, T. L., Du, W. P., Hu, B. W., Li, J. R., Bu, X. H. & Cao, R. (2008). CrystEngComm, 10, 1037–1043.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, m379 [doi:10.1107/S1600536812008963]

$Poly[\mu_2-aqua-bis[\mu_4-2-(1H-1,2,3-benzotriazol-1-yl)acetato]dipotassium]$

Qiong Liu

Comment

Organic ligands based on azole heterocycles or carboxylate groups which contain N and O donors have both good coordination ability and diverse coordination modes (Hu *et al.*, 2008). Therefore, the ligand 1*H*-benzotriazole-1-acetic acid was chosen to create coordination architectures. The synthesis of the ligand was the first step. But, when we synthesized the ligand according to the method of literature (see experimental section), the title complex (I) was obtained instead of the target ligand.

The title complex (I) is a polymeric potassium(I) complex of which the asymmetric is shown in Fig. 1. The environment of the K^{I} ion is a distorted mono-capped octahedral geometry. Each K^{I} ion is coordinated by one O atom from a water molecule, five carboxylate O atoms and one N atom from the ligands. The polymeric structure is a two-dimensional layer parallel to (001) (see, Fig. 2).

Experimental

Reagents and solvents were of commercially available quality. The title compound was synthesized according to the method of Hu *et al.* 2008. To a bromoacetonitrile solution of 1*H*-Benzotriazole (11.9 g), potassium hydroxide (6.8 g), anhydrous K_2CO_3 (13.8 g) and TEBA (benzyltriethylammoniumchloride, 99%, 0.15 g) were added. The mixture was stirred at room temperature for 30 min. After cooling to 283 K, 8.4 ml (0.075 mol) ethyl bromoacetate was added dropwise with further stirring. After standing at room temperature overnight the mixture was filtered and the filtrate was distilled under diminished pressure to obtain a yellow liquid. 100 ml water was added to the yellow liquid and the mixture was left to stand for 12 h at a condition of circumfluence. Single crystals suitable for X-ray diffraction were obtained after removing the solvent and recrystallizing in water and methanol solution (30 mL, 5: 1, v/v) at room temperature. Yield: 20%.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to $1.2U_{eq}(C)$. The unique water H atom was located in a difference Fourier map, and were refined freely.

Computing details

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The asymmetric unit of the title complex showing 40% probability displacement ellipsoids for non-hydrogen atoms.

Figure 2

A packing diagram of the title compound, viewed along the *b* axis, showing the two-dimensional layered structure.

Poly[µ2-aqua-bis[µ4-2-(1H-1,2,3-benzotriazol-1-yl)acetato]dipotassium]

Crystal data

 $[K_{2}(C_{8}H_{6}N_{3}O_{2})_{2}(H_{2}O)]$ $M_{r} = 448.53$ Monoclinic, C2 Hall symbol: C 2y a = 12.159 (2) Å b = 4.5893 (9) Å c = 17.666 (4) Å $\beta = 104.98$ (3)° V = 952.2 (3) Å³ Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.878, T_{\max} = 0.937$

Refinement

Refinement on F^2 Hydrogen site location: inferred from neighbouring sites Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.069$ H atoms treated by a mixture of independent $wR(F^2) = 0.135$ and constrained refinement S = 1.05 $w = 1/[\sigma^2(F_o^2) + (0.0551P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ 2140 reflections 136 parameters $(\Delta/\sigma)_{\rm max} < 0.001$ 0 restraints $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 925 Friedel Secondary atom site location: difference Fourier pairs Flack parameter: -0.02(9)map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 460

 $\theta = 3.4 - 27.6^{\circ}$

 $\mu = 0.54 \text{ mm}^{-1}$

Prism. colorless

 $0.3 \times 0.2 \times 0.12$ mm

4827 measured reflections 2140 independent reflections

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$ $h = -15 \rightarrow 15$

1508 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.053$

 $k = -5 \rightarrow 5$

 $l = -22 \rightarrow 22$

 $D_{\rm x} = 1.564 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 4308 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
K1	0.62160 (7)	0.3984 (3)	0.43153 (5)	0.0478 (3)	
01	0.3919 (3)	0.6125 (7)	0.39356 (19)	0.0563 (9)	
02	0.2403 (2)	0.3829 (10)	0.41277 (15)	0.0495 (7)	

N1	0.3763 (3)	0.3467 (9)	0.2538 (2)	0.0481 (10)
N2	0.4845 (3)	0.2466 (10)	0.2740 (2)	0.0601 (12)
N3	0.5400 (3)	0.3627 (15)	0.2268 (2)	0.0670 (13)
C1	0.3119 (3)	0.4388 (11)	0.3754 (2)	0.0388 (11)
C2	0.2979 (4)	0.2654 (12)	0.2991 (3)	0.0541 (13)
H2A	0.3078	0.0599	0.3119	0.065*
H2B	0.2208	0.2920	0.2670	0.065*
C3	0.4673 (4)	0.5401 (12)	0.1754 (3)	0.0489 (12)
C4	0.4849 (5)	0.7071 (14)	0.1142 (3)	0.0687 (16)
H4A	0.5550	0.7097	0.1023	0.082*
C5	0.3952 (5)	0.8677 (19)	0.0721 (3)	0.0718 (16)
H5A	0.4048	0.9844	0.0313	0.086*
C6	0.2893 (5)	0.8601 (15)	0.0894 (3)	0.0667 (15)
H6A	0.2297	0.9691	0.0588	0.080*
C7	0.2702 (4)	0.6970 (12)	0.1501 (3)	0.0562 (13)
H7A	0.2001	0.6952	0.1620	0.067*
C8	0.3618 (4)	0.5360 (11)	0.1923 (3)	0.0442 (11)
O3	0.5000	0.0180 (11)	0.5000	0.0529 (13)
H3	0.465 (4)	-0.090 (18)	0.461 (3)	0.083 (17)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
K1	0.0443 (5)	0.0509 (5)	0.0467 (6)	-0.0037 (6)	0.0089 (4)	0.0024 (6)
O1	0.060 (2)	0.054 (2)	0.055 (2)	-0.0158 (18)	0.0148 (16)	-0.0082 (17)
O2	0.0438 (15)	0.0609 (18)	0.0465 (17)	0.003 (2)	0.0165 (12)	0.004 (2)
N1	0.044 (2)	0.062 (3)	0.041 (2)	-0.008(2)	0.0158 (16)	-0.006 (2)
N2	0.052 (3)	0.081 (3)	0.046 (3)	0.001 (2)	0.0098 (19)	-0.003 (2)
N3	0.050(2)	0.095 (4)	0.058 (3)	-0.005 (3)	0.017 (2)	-0.008 (3)
C1	0.039 (2)	0.035 (3)	0.038 (2)	0.004 (2)	0.0025 (17)	0.007 (2)
C2	0.057 (3)	0.062 (3)	0.045 (3)	-0.020 (2)	0.016 (2)	-0.007 (2)
C3	0.052 (3)	0.058 (3)	0.037 (3)	-0.010 (3)	0.013 (2)	-0.016 (2)
C4	0.064 (4)	0.085 (4)	0.063 (4)	-0.015 (3)	0.028 (3)	-0.013 (3)
C5	0.103 (4)	0.069 (4)	0.051 (3)	-0.011 (5)	0.032 (3)	-0.003 (4)
C6	0.087 (4)	0.060 (4)	0.050 (3)	0.007 (4)	0.012 (3)	0.002 (3)
C7	0.052 (3)	0.061 (3)	0.057 (3)	0.004 (3)	0.016 (2)	-0.016 (3)
C8	0.045 (3)	0.052 (3)	0.037 (3)	-0.007(2)	0.013 (2)	-0.017 (2)
O3	0.065 (3)	0.042 (3)	0.048 (3)	0.000	0.008 (3)	0.000

Geometric parameters (Å, °)

K1—O2 ⁱ	2.718 (4)	C1—C2	1.536 (6)	
K1—O3	2.760 (3)	С1—К1 ^{іі}	3.301 (4)	
K1—O2 ⁱⁱ	2.829 (3)	C1—K1 ^v	3.461 (5)	
K1—O2 ⁱⁱⁱ	2.835 (4)	C2—H2A	0.9700	
K1—01	2.872 (4)	C2—H2B	0.9700	
K1—N2	2.934 (4)	C3—C4	1.386 (7)	
K101 ⁱⁱ	3.287 (3)	C3—C8	1.389 (6)	
01—C1	1.234 (5)	C4—C5	1.366 (8)	
O1—K1 ⁱⁱ	3.287 (3)	C4—H4A	0.9300	

O2—C1	1.248 (4)	C5—C6	1.399 (6)
O2—K1 ^{iv}	2.718 (4)	С5—Н5А	0.9300
O2—K1 ⁱⁱ	2.829 (3)	C6—C7	1.376 (7)
O2—K1 ^v	2.835 (4)	С6—Н6А	0.9300
N1—N2	1.351 (5)	C7—C8	1.383 (7)
N1—C8	1.367 (6)	C7—H7A	0.9300
N1—C2	1.444 (5)	O3—K1 ⁱⁱ	2.760 (3)
N2—N3	1.314 (6)	03—Н3	0.87 (6)
N3—C3	1.362 (7)		
	1.502(7)		
$02^{i}-K1-03$	158 80 (10)	Ω^{2i} K1 H3	1718(13)
02^{i} K1 02^{i}	86 48 (10)	03—K1—H3	160(9)
$03-K1-02^{ii}$	78.97 (8)	02 ⁱⁱ —K1—H3	93 3 (9)
02^{i} K1 02^{i}	111 47 (9)	$O2^{iii}$ K1—H3	76.6 (13)
02 - K1 - 02	82 54 (10)	$O_2 = K_1 = H_3$	70.0(13)
O_{3} K1 O_{2}	82.34(10)	N2 K1 H2	71.3(12)
02 - K1 - 02	64.50(10) 101.02(10)	$N_2 - K_1 - H_3$	70.2 (9)
02 - K1 = 01	101.92(10)	OI^{-} KI H2	82.9 (10)
03—KI—01	/3./4 (9)	$C1^{II}$ K1 H2	82.2 (9)
02^{H} KI 01	122.19 (10)	CI^{III} — KI — $H3$	95.4 (13)
02^{m} KI 01	138.77 (10)	KI^{M} — KI — $H3$	135.8 (9)
$O2^{1}$ —K1—N2	105.55 (11)	$K1^{vn}$ — $K1$ — $H3$	84.5 (11)
O3—K1—N2	91.61 (10)	$K1^{n}$ — $K1$ — $H3$	49.8 (12)
$O2^{n}$ —K1—N2	164.82 (13)	C1—O1—K1	119.5 (3)
$O2^{iii}$ —K1—N2	82.69 (10)	C1—O1—K1 ⁱⁱ	79.9 (3)
O1—K1—N2	65.15 (10)	K1—O1—K1 ⁱⁱ	87.70 (10)
$O2^{i}$ —K1—O1 ⁱⁱ	91.55 (9)	C1—O2—K1 ^{iv}	134.2 (4)
O3—K1—O1 ⁱⁱ	67.34 (9)	C1—O2—K1 ⁱⁱ	100.9 (2)
$O2^{ii}$ —K1—O1 ⁱⁱ	41.81 (9)	$K1^{iv}$ —O2— $K1^{ii}$	95.88 (10)
$O2^{iii}$ —K1—O1 ⁱⁱ	120.67 (8)	C1—O2—K1 ^v	109.7 (3)
01—K1—O1 ⁱⁱ	80.53 (11)	$K1^{iv}$ — $O2$ — $K1^{v}$	111.47 (8)
N2—K1—O1 ⁱⁱ	143.94 (10)	$K1^{ii}$ —O2— $K1^{v}$	93.30 (11)
$O2^{i}$ —K1—C1 ⁱⁱ	94.83 (10)	N2—N1—C8	110.1 (3)
O3—K1—C1 ⁱⁱ	66.33 (9)	N2—N1—C2	120.2 (4)
O2 ⁱⁱ —K1—C1 ⁱⁱ	21.80 (8)	C8—N1—C2	129.6 (4)
O2 ⁱⁱⁱ —K1—C1 ⁱⁱ	99.89 (11)	N3—N2—N1	108.6 (4)
O1—K1—C1 ⁱⁱ	100.70 (11)	N3—N2—K1	104.3 (3)
N2—K1—C1 ⁱⁱ	157.01 (12)	N1—N2—K1	116.5 (3)
O1 ⁱⁱ —K1—C1 ⁱⁱ	21.59 (9)	N2—N3—C3	108.3 (4)
$O2^{i}$ —K1—C1 ⁱⁱⁱ	92.76 (12)	01—C1—O2	127.2 (4)
O3—K1—C1 ⁱⁱⁱ	102.35 (12)	Q1—C1—C2	117.7 (4)
02^{ii} K1 C1 ⁱⁱⁱ	89.46 (10)	02-C1-C2	115.0 (4)
$02^{iii} - K1 - C1^{iii}$	19.86 (9)	$01 - C1 - K1^{ii}$	78 5 (2)
$01-K1-C1^{iii}$	14545(10)	$0^{2}-C_{1}-K_{1}^{ii}$	57.28(19)
$N_2 - K_1 - C_1^{iii}$	80.89 (11)	$C_{2}^{-}C_{1}^{-}K_{1}^{ii}$	145.0(3)
$O1^{\parallel}$ K1 $C1^{\parallel}$	130 64 (0)	$C_2 C_1 K_1$	941(3)
$C1^{ii}$ $K1$ $C1^{iii}$	100.04 (7)	0^2 C^1 K^1	50.5(3)
$O2^{i}$ K1 K1 Vi	43 10 (5)	$C_2 = C_1 = K_1$	129 5 (3)
$O_2 = K_1 = K_1$	120 37 (5)	K_1^{ii}	75 00 (0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.37(3)	$\mathbf{X}_{1} = \mathbf{C}_{1} = \mathbf{X}_{1}$ $\mathbf{X}_{1} = \mathbf{C}_{2} = \mathbf{C}_{1}$	114 A (A)
02 - K1 - K1	7,71 (7)	1 - 02 - 01	114.4 (4)

$O2^{11}-K1-K1^{v_1}$	101.65 (7)	N1—C2—H2A	108.7
O1— $K1$ — $K1$ ^{vi}	119.37 (7)	C1—C2—H2A	108.7
N2—K1—K1 vi	147.99 (10)	N1—C2—H2B	108.7
$O1^{ii}$ —K1—K1 ^{vi}	59.71 (6)	C1—C2—H2B	108.7
$C1^{ii}$ — $K1$ — $K1^{vi}$	54.26 (8)	H2A—C2—H2B	107.6
$C1^{iii}$ — $K1$ — $K1^{vi}$	92.65 (8)	N3—C3—C4	130.2 (5)
$O2^{i}$ —K1—K1 ^{vii}	100.47 (7)	N3—C3—C8	108.9 (4)
O3—K1—K1 ^{vii}	78.52 (5)	C4—C3—C8	120.8 (5)
O2 ⁱⁱ —K1—K1 ^{vii}	41.03 (8)	C5—C4—C3	117.4 (5)
O2 ⁱⁱⁱ —K1—K1 ^{vii}	43.29 (5)	C5—C4—H4A	121.3
O1—K1—K1 ^{vii}	150.66 (8)	C3—C4—H4A	121.3
N2—K1—K1 ^{vii}	125.69 (9)	C4—C5—C6	121.2 (6)
O1 ⁱⁱ —K1—K1 ^{vii}	80.15 (7)	С4—С5—Н5А	119.4
C1 ⁱⁱ —K1—K1 ^{vii}	58.57 (9)	С6—С5—Н5А	119.4
C1 ⁱⁱⁱ —K1—K1 ^{vii}	50.74 (7)	C7—C6—C5	122.3 (6)
K1 ^{vi} —K1—K1 ^{vii}	67.72 (3)	С7—С6—Н6А	118.9
O2 ⁱ —K1—K1 ⁱⁱ	122.38 (7)	С5—С6—Н6А	118.9
O3—K1—K1 ⁱⁱ	39.22 (9)	C6—C7—C8	115.9 (5)
$O2^{ii}-K1-K1^{ii}$	76.91 (6)	С6—С7—Н7А	122.1
02^{iii} K1 K1 ⁱⁱ	120.90 (6)	C8—C7—H7A	122.1
$01 - K1 - K1^{ii}$	50.16 (7)	N1-C8-C7	133.5 (4)
$N_{2}-K_{1}-K_{1}$	103 29 (9)	N1-C8-C3	104.0(4)
01^{ii} K1 K1	42 14 (6)	C7 - C8 - C3	1224(5)
$C1^{ii}$ $K1$ $K1^{ii}$	55 66 (8)	$K_1 = 0^3 = K_1^{ii}$	101.56(17)
$C1^{iii}$ $K1$ $K1^{ii}$	140 67 (8)	K1_03_H3	101.50(17) 103(4)
K_{1}^{vi}	101 41 (4)	K1 ⁱⁱ _O3_H3	103(4) 120(4)
K_1^{vii} K_1^{vii} K_1^{vii}	101.41(4)		120 (4)
KI —KI—KI	101.41 (4)		
$O2^{i}$ —K1—O1—C1	160.5 (3)	K1 ⁱⁱ —O1—C1—O2	32.1 (5)
03—K1—01—C1	-40.9(3)	K1-01-C1-C2	-65.4(4)
02^{ii} K1-01-C1	-1061(3)	$K1^{ii} - 01 - 01 - 02$	-1469(4)
02^{iii} K1-01-C1	16 6 (4)	$K_1 = 01 = 01 = 02$	81 5 (2)
$N_{2}-K_{1}-O_{1}-C_{1}$	58.8 (3)	$K_1 = 01 = C_1 = K_1^{v}$	155 27 (17)
112 K1 01 C1	-1099(3)	$K1^{ii} - 01 - 01 - K1^{v}$	73 78 (9)
$C1^{ii}$ K1 $-C1$	-1021(3)	$K1^{iv} - 02 - 01$	-1477(4)
C1 $K1$ $O1$ $C1$	102.1(3)	$K_1 = 02 = 01$	-383(5)
$C_1 - K_1 - O_1 - C_1$	-1570(2)	$K_1 = 02 = 01$	50.3(5)
KI - KI - 0I - 0I	-137.0(3)	KI = 02 = CI = 0I	39.3(3)
	-60.5(4)	$K1^{}-02^{}-02^{}-02^{}$	31.3 (5) 140.8 (2)
KI^{*} KI OI KI^{*}	-77.0(3)	$K1^{}02^{-$	140.8(3)
$02 - KI = 01 - KI^{"}$	-122.40(8)	$KI^{*} = 02 = CI = C2$	-121.7(4)
$03-KI-0I-KI^{*}$	36.13 (8)	$KI^{W} = 02 = CI = KI^{W}$	-109.5(3)
$O2^{n}$ KI $O1$ KI	-29.10(15)	$KI^{v} = 02 = CI = KI^{u}$	97.5 (2)
02^{m} KI 01 KI	93.58 (13)	$KI^{W} = 02 = CI = KI^{W}$	153.0 (4)
$N2-K1-O1-K1^{n}$	135.76 (13)	$K1^{n}$ — $O2$ — $C1$ — $K1^{v}$	-97.5 (2)
Ol^{μ} Kl Ol Kl^{μ}	-32.88 (11)	N2—N1—C2—C1	79.5 (6)
$C1^{n}$ — $K1$ — $O1$ — $K1^{n}$	-25.14 (12)	C8—N1—C2—C1	-95.5 (5)
$C1^{m}$ — $K1$ — $O1$ — $K1^{n}$	124.37 (17)	01—C1—C2—N1	-4.9 (6)
$K1^{v_1}$ — $K1$ — $O1$ — $K1^{ii}$	-79.99 (9)	02—C1—C2—N1	175.9 (4)
$K1^{vii}$ — $K1$ — $O1$ — $K1^{ii}$	16.52 (19)	$K1^{ii}$ — $C1$ — $C2$ — $N1$	-116.0 (5)

C8—N1—N2—N3	-0.8 (6)	K1 ^v —C1—C2—N1	117.6 (4)
C2—N1—N2—N3	-176.7 (4)	N2—N3—C3—C4	-179.2 (5)
C8—N1—N2—K1	116.5 (3)	N2—N3—C3—C8	0.7 (6)
C2—N1—N2—K1	-59.4 (5)	N3—C3—C4—C5	-179.5 (6)
$O2^{i}$ —K1—N2—N3	24.2 (4)	C8—C3—C4—C5	0.6 (7)
O3—K1—N2—N3	-168.4 (4)	C3—C4—C5—C6	-1.0 (9)
O2 ⁱⁱ —K1—N2—N3	-117.3 (5)	C4—C5—C6—C7	1.4 (10)
O2 ⁱⁱⁱ —K1—N2—N3	-86.1 (4)	C5—C6—C7—C8	-1.2 (8)
O1—K1—N2—N3	120.4 (4)	N2—N1—C8—C7	-179.7 (5)
O1 ⁱⁱ —K1—N2—N3	139.7 (3)	C2—N1—C8—C7	-4.3 (9)
C1 ⁱⁱ —K1—N2—N3	175.8 (4)	N2—N1—C8—C3	1.2 (5)
C1 ⁱⁱⁱ —K1—N2—N3	-66.1 (4)	C2—N1—C8—C3	176.6 (4)
K1 ^{vi} —K1—N2—N3	14.2 (5)	C6—C7—C8—N1	-178.2 (5)
K1 ^{vii} —K1—N2—N3	-91.4 (4)	C6—C7—C8—C3	0.7 (7)
K1 ⁱⁱ —K1—N2—N3	153.8 (4)	N3—C3—C8—N1	-1.1 (5)
$O2^{i}$ —K1—N2—N1	-95.4 (3)	C4—C3—C8—N1	178.8 (5)
O3—K1—N2—N1	72.0 (3)	N3—C3—C8—C7	179.6 (5)
O2 ⁱⁱ —K1—N2—N1	123.1 (4)	C4—C3—C8—C7	-0.5 (7)
O2 ⁱⁱⁱ —K1—N2—N1	154.3 (4)	O2 ⁱ —K1—O3—K1 ⁱⁱ	35.2 (2)
O1—K1—N2—N1	0.8 (3)	O2 ⁱⁱ —K1—O3—K1 ⁱⁱ	82.75 (8)
O1 ⁱⁱ —K1—N2—N1	20.0 (5)	O2 ⁱⁱⁱ —K1—O3—K1 ⁱⁱ	168.36 (6)
C1 ⁱⁱ —K1—N2—N1	56.2 (5)	O1—K1—O3—K1 ⁱⁱ	-45.72 (7)
C1 ⁱⁱⁱ —K1—N2—N1	174.2 (4)	N2—K1—O3—K1 ⁱⁱ	-109.23 (9)
K1 ^{vi} —K1—N2—N1	-105.4 (3)	O1 ⁱⁱ —K1—O3—K1 ⁱⁱ	40.61 (7)
K1 ^{vii} —K1—N2—N1	149.0 (3)	C1 ⁱⁱ —K1—O3—K1 ⁱⁱ	64.09 (10)
K1 ⁱⁱ —K1—N2—N1	34.2 (3)	C1 ⁱⁱⁱ —K1—O3—K1 ⁱⁱ	169.75 (7)
N1—N2—N3—C3	0.0 (6)	K1 ^{vi} —K1—O3—K1 ⁱⁱ	69.19 (5)
K1—N2—N3—C3	-124.8 (4)	K1 ^{vii} —K1—O3—K1 ⁱⁱ	124.62 (4)
K1—O1—C1—O2	113.6 (5)		

Symmetry codes: (i) x+1/2, y+1/2, z; (ii) -x+1, y, -z+1; (iii) x+1/2, y-1/2, z; (iv) x-1/2, y-1/2, z; (v) x-1/2, y+1/2, z; (vi) -x+3/2, y+1/2, -z+1; (vii) -x+3/2, y-1/2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3…O1 ^{viii}	0.87 (6)	1.87 (7)	2.729 (5)	167 (7)

Symmetry code: (viii) *x*, *y*–1, *z*.